3.140 \(\int \csc ^2(a+b x) \sec (a+b x) \, dx\)

Optimal. Leaf size=23 \[ \frac{\tanh ^{-1}(\sin (a+b x))}{b}-\frac{\csc (a+b x)}{b} \]

[Out]

ArcTanh[Sin[a + b*x]]/b - Csc[a + b*x]/b

________________________________________________________________________________________

Rubi [A]  time = 0.0217056, antiderivative size = 23, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2621, 321, 207} \[ \frac{\tanh ^{-1}(\sin (a+b x))}{b}-\frac{\csc (a+b x)}{b} \]

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^2*Sec[a + b*x],x]

[Out]

ArcTanh[Sin[a + b*x]]/b - Csc[a + b*x]/b

Rule 2621

Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[(f*a^n)^(-1), Subst
[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Integer
Q[(n + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \csc ^2(a+b x) \sec (a+b x) \, dx &=-\frac{\operatorname{Subst}\left (\int \frac{x^2}{-1+x^2} \, dx,x,\csc (a+b x)\right )}{b}\\ &=-\frac{\csc (a+b x)}{b}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\csc (a+b x)\right )}{b}\\ &=\frac{\tanh ^{-1}(\sin (a+b x))}{b}-\frac{\csc (a+b x)}{b}\\ \end{align*}

Mathematica [C]  time = 0.0146672, size = 27, normalized size = 1.17 \[ -\frac{\csc (a+b x) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\sin ^2(a+b x)\right )}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^2*Sec[a + b*x],x]

[Out]

-((Csc[a + b*x]*Hypergeometric2F1[-1/2, 1, 1/2, Sin[a + b*x]^2])/b)

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 33, normalized size = 1.4 \begin{align*} -{\frac{1}{b\sin \left ( bx+a \right ) }}+{\frac{\ln \left ( \sec \left ( bx+a \right ) +\tan \left ( bx+a \right ) \right ) }{b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(b*x+a)/sin(b*x+a)^2,x)

[Out]

-1/b/sin(b*x+a)+1/b*ln(sec(b*x+a)+tan(b*x+a))

________________________________________________________________________________________

Maxima [A]  time = 0.989706, size = 49, normalized size = 2.13 \begin{align*} -\frac{\frac{2}{\sin \left (b x + a\right )} - \log \left (\sin \left (b x + a\right ) + 1\right ) + \log \left (\sin \left (b x + a\right ) - 1\right )}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)/sin(b*x+a)^2,x, algorithm="maxima")

[Out]

-1/2*(2/sin(b*x + a) - log(sin(b*x + a) + 1) + log(sin(b*x + a) - 1))/b

________________________________________________________________________________________

Fricas [B]  time = 1.9893, size = 136, normalized size = 5.91 \begin{align*} \frac{\log \left (\sin \left (b x + a\right ) + 1\right ) \sin \left (b x + a\right ) - \log \left (-\sin \left (b x + a\right ) + 1\right ) \sin \left (b x + a\right ) - 2}{2 \, b \sin \left (b x + a\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)/sin(b*x+a)^2,x, algorithm="fricas")

[Out]

1/2*(log(sin(b*x + a) + 1)*sin(b*x + a) - log(-sin(b*x + a) + 1)*sin(b*x + a) - 2)/(b*sin(b*x + a))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (a + b x \right )}}{\sin ^{2}{\left (a + b x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)/sin(b*x+a)**2,x)

[Out]

Integral(sec(a + b*x)/sin(a + b*x)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.19789, size = 51, normalized size = 2.22 \begin{align*} -\frac{\frac{2}{\sin \left (b x + a\right )} - \log \left ({\left | \sin \left (b x + a\right ) + 1 \right |}\right ) + \log \left ({\left | \sin \left (b x + a\right ) - 1 \right |}\right )}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)/sin(b*x+a)^2,x, algorithm="giac")

[Out]

-1/2*(2/sin(b*x + a) - log(abs(sin(b*x + a) + 1)) + log(abs(sin(b*x + a) - 1)))/b